on the problems in "4 Trig functions/4.4 Cotangent"
Test results for the 17 problems in "4.4.0 (a trg) ^m (b cot)^n.txt"
Problem 10: Unable to integrate problem.

$$
\int \cot (b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 5, 44 leaves, 2 steps):

$$
-\frac{\cot (b x+a)^{1+n} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right],-\cot (b x+a)^{2}\right)}{b(1+n)}
$$

Result(type 8, 10 leaves):

$$
\int \cot (b x+a)^{n} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int(b \cot (f x+e))^{n}(a \sin (f x+e))^{m} \mathrm{~d} x
$$

Optimal(type 5, 81 leaves, 2 steps):

$$
-\frac{(b \cot (f x+e))^{1+n} \text { hypergeom }\left(\left[\frac{1}{2}+\frac{n}{2}, \frac{1}{2}-\frac{m}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \cos (f x+e)^{2}\right)(a \sin (f x+e))^{m}\left(\sin (f x+e)^{2}\right)^{\frac{1}{2}-\frac{m}{2}+\frac{n}{2}}}{b f(1+n)}
$$

Result(type 8, 23 leaves):

$$
\int(b \cot (f x+e))^{n}(a \sin (f x+e))^{m} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int(a \cot (f x+e))^{m}(b \cot (f x+e))^{n} \mathrm{~d} x
$$

Optimal(type 5, 66 leaves, 3 steps):

$$
-\frac{(a \cot (f x+e))^{1+m}(b \cot (f x+e))^{n} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{m}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{m}{2}+\frac{n}{2}\right],-\cot (f x+e)^{2}\right)}{a f(1+m+n)}
$$

Result(type 8, 23 leaves):

$$
\int(a \cot (f x+e))^{m}(b \cot (f x+e))^{n} \mathrm{~d} x
$$

$$
\int(d \cot (f x+e))^{n} \sin (f x+e)^{4} \mathrm{~d} x
$$

Optimal(type 5, 49 leaves, 2 steps):

$$
-\frac{(d \cot (f x+e))^{1+n} \text { hypergeom }\left(\left[3, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right],-\cot (f x+e)^{2}\right)}{d f(1+n)}
$$

Result(type 8, 21 leaves):

$$
\int(d \cot (f x+e))^{n} \sin (f x+e)^{4} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int(d \cot (f x+e))^{n} \csc (f x+e) \mathrm{d} x
$$

Optimal(type 5, 71 leaves, 1 step):

$$
-\frac{(d \cot (f x+e))^{1+n} \csc (f x+e) \text { hypergeom }\left(\left[1+\frac{n}{2}, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \cos (f x+e)^{2}\right)\left(\sin (f x+e)^{2}\right)^{1+\frac{n}{2}}}{d f(1+n)}
$$

Result(type 8, 19 leaves):

$$
\int(d \cot (f x+e))^{n} \csc (f x+e) \mathrm{d} x
$$

Test results for the 10 problems in "4.4.1.2 (d csc)^m (a+bcot)^n.txt" Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\csc (x)^{3}}{\mathrm{I}+\cot (x)} \mathrm{d} x
$$

Optimal(type 3, 11 leaves, 2 steps):

$$
I \operatorname{arctanh}(\cos (x))-\csc (x)
$$

Result(type 3, 23 leaves):

$$
-\frac{\tan \left(\frac{x}{2}\right)}{2}-\mathrm{I} \ln \left(\tan \left(\frac{x}{2}\right)\right)-\frac{1}{2 \tan \left(\frac{x}{2}\right)}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sin (x)^{2}}{a+b \cot (x)} d x
$$

Optimal(type 3, 68 leaves, 7 steps):

$$
\frac{a\left(a^{2}+3 b^{2}\right) x}{2\left(a^{2}+b^{2}\right)^{2}}-\frac{b^{3} \ln (b \cos (x)+a \sin (x))}{\left(a^{2}+b^{2}\right)^{2}}-\frac{(b+a \cot (x)) \sin (x)^{2}}{2\left(a^{2}+b^{2}\right)}
$$

Result(type 3, 172 leaves):

$$
\begin{aligned}
-\frac{\tan (x) a^{3}}{2\left(a^{2}+b^{2}\right)^{2}\left(\tan (x)^{2}+1\right)} & -\frac{\tan (x) a b^{2}}{2\left(a^{2}+b^{2}\right)^{2}\left(\tan (x)^{2}+1\right)}+\frac{a^{2} b}{2\left(a^{2}+b^{2}\right)^{2}\left(\tan (x)^{2}+1\right)}+\frac{b^{3}}{2\left(a^{2}+b^{2}\right)^{2}\left(\tan (x)^{2}+1\right)}+\frac{b^{3} \ln \left(\tan (x)^{2}+1\right)}{2\left(a^{2}+b^{2}\right)^{2}} \\
\quad+\frac{3 \arctan (\tan (x)) a b^{2}}{2\left(a^{2}+b^{2}\right)^{2}} & +\frac{\arctan (\tan (x)) a^{3}}{2\left(a^{2}+b^{2}\right)^{2}}-\frac{b^{3} \ln (a \tan (x)+b)}{\left(a^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sin (x)^{4}}{a+b \cot (x)} d x
$$

Optimal(type 3, 114 leaves, 8 steps):

$$
\frac{a\left(3 a^{4}+10 a^{2} b^{2}+15 b^{4}\right) x}{8\left(a^{2}+b^{2}\right)^{3}}-\frac{b^{5} \ln (b \cos (x)+a \sin (x))}{\left(a^{2}+b^{2}\right)^{3}}-\frac{\left(4 b^{3}+a\left(3 a^{2}+7 b^{2}\right) \cot (x)\right) \sin (x)^{2}}{8\left(a^{2}+b^{2}\right)^{2}}-\frac{(b+a \cot (x)) \sin (x)^{4}}{4\left(a^{2}+b^{2}\right)}
$$

Result(type 3, 406 leaves):

$$
\begin{aligned}
& -\frac{7 \tan (x)^{3} a^{3} b^{2}}{4\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}-\frac{9 \tan (x)^{3} a b^{4}}{8\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}-\frac{5 \tan (x)^{3} a^{5}}{8\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{\tan (x)^{2} a^{4} b}{2\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}} \\
& \quad+\frac{3 \tan (x)^{2} a^{2} b^{3}}{2\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{\tan (x)^{2} b^{5}}{\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}-\frac{3 \tan (x) a^{5}}{8\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}-\frac{5 \tan (x) a^{3} b^{2}}{4\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}} \\
& -\frac{7 \tan (x) a b^{4}}{8\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{a^{4} b}{4\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{a^{2} b^{3}}{\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{3 b^{5}}{4\left(a^{2}+b^{2}\right)^{3}\left(\tan (x)^{2}+1\right)^{2}}+\frac{b^{5} \ln \left(\tan (x)^{2}+1\right)}{2\left(a^{2}+b^{2}\right)^{3}} \\
& \quad+\frac{15 \arctan (\tan (x)) a b^{4}}{8\left(a^{2}+b^{2}\right)^{3}}+\frac{3 \arctan (\tan (x)) a^{5}}{8\left(a^{2}+b^{2}\right)^{3}}+\frac{5 \arctan (\tan (x)) a^{3} b^{2}}{4\left(a^{2}+b^{2}\right)^{3}}-\frac{b^{5} \ln (a \tan (x)+b)}{\left(a^{2}+b^{2}\right)^{3}}
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{\csc (x)^{5}}{a+b \cot (x)} \mathrm{d} x
$$

Optimal(type 3, 91 leaves, 9 steps):
$\frac{a \operatorname{arctanh}(\cos (x))}{2 b^{2}}+\frac{a\left(a^{2}+b^{2}\right) \operatorname{arctanh}(\cos (x))}{b^{4}}+\frac{\left(a^{2}+b^{2}\right)^{3 / 2} \operatorname{arctanh}\left(\frac{(b-a \cot (x)) \sin (x)}{\sqrt{a^{2}+b^{2}}}\right)}{b^{4}}-\frac{\left(a^{2}+b^{2}\right) \csc (x)}{b^{3}}+\frac{a \cot (x) \csc (x)}{2 b^{2}}-\frac{\csc (x)^{3}}{3 b}$
Result(type 3, 231 leaves):

$$
\begin{aligned}
& -\frac{\tan \left(\frac{x}{2}\right)^{3}}{24 b}-\frac{a \tan \left(\frac{x}{2}\right)^{2}}{8 b^{2}}-\frac{a^{2} \tan \left(\frac{x}{2}\right)}{2 b^{3}}-\frac{5 \tan \left(\frac{x}{2}\right)}{8 b}-\frac{1}{24 b \tan \left(\frac{x}{2}\right)^{3}}-\frac{a^{2}}{2 b^{3} \tan \left(\frac{x}{2}\right)}-\frac{5}{8 b \tan \left(\frac{x}{2}\right)}+\frac{a}{8 b^{2} \tan \left(\frac{x}{2}\right)^{2}}-\frac{a^{3} \ln \left(\tan \left(\frac{x}{2}\right)\right)}{b^{4}} \\
& -\frac{3 a \ln \left(\tan \left(\frac{x}{2}\right)\right)}{2 b^{2}}+\frac{2 \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right) a^{4}}{b^{4} \sqrt{a^{2}+b^{2}}}+\frac{4 \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right) a^{2}}{b^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{\csc (x)^{3}}{a+b \cot (x)} \mathrm{d} x
$$

Optimal(type 3, 49 leaves, 5 steps):

$$
\frac{a \operatorname{arctanh}(\cos (x))}{b^{2}}-\frac{\csc (x)}{b}+\frac{\operatorname{arctanh}\left(\frac{(b-a \cot (x)) \sin (x)}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2}}
$$

Result(type 3, 106 leaves):

$$
-\frac{\tan \left(\frac{x}{2}\right)}{2 b}-\frac{1}{2 b \tan \left(\frac{x}{2}\right)}-\frac{a \ln \left(\tan \left(\frac{x}{2}\right)\right)}{b^{2}}+\frac{2 \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right) a^{2}}{b^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}
$$

Test results for the 9 problems in "4.4.1.3 (d cos)^m (a+b cot)^n.txt"
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sec (x)^{3}}{\mathrm{I}+\cot (x)} \mathrm{d} x
$$

Optimal(type 3, 16 leaves, 8 steps):

$$
\frac{I \operatorname{arctanh}(\sin (x))}{2}+\sec (x)-\frac{\mathrm{I} \sec (x) \tan (x)}{2}
$$

Result(type 3, 83 leaves):
$\frac{\mathrm{I}}{2\left(\tan \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{\mathrm{I} \ln \left(\tan \left(\frac{x}{2}\right)+1\right)}{2}+\frac{1}{\tan \left(\frac{x}{2}\right)+1}-\frac{\mathrm{I}}{2\left(\tan \left(\frac{x}{2}\right)+1\right)}-\frac{\mathrm{I} \ln \left(\tan \left(\frac{x}{2}\right)-1\right)}{2}-\frac{\mathrm{I}}{2\left(\tan \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{1}{\tan \left(\frac{x}{2}\right)-1}$

$$
-\frac{\mathrm{I}}{2\left(\tan \left(\frac{x}{2}\right)-1\right)}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sec (x)^{3}}{a+b \cot (x)} \mathrm{d} x
$$

Optimal(type 3, 71 leaves, 9 steps):

$$
\frac{\operatorname{arctanh}(\sin (x))}{2 a}+\frac{b^{2} \operatorname{arctanh}(\sin (x))}{a^{3}}-\frac{b \sec (x)}{a^{2}}+\frac{b \operatorname{arctanh}\left(\frac{\cos (x) a-\sin (x) b}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{3}}+\frac{\sec (x) \tan (x)}{2 a}
$$

Result (type 3, 171 leaves):

$$
\begin{aligned}
& -\frac{1}{2 a\left(\tan \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{2 a\left(\tan \left(\frac{x}{2}\right)+1\right)}-\frac{b}{a^{2}\left(\tan \left(\frac{x}{2}\right)+1\right)}+\frac{\ln \left(\tan \left(\frac{x}{2}\right)+1\right)}{2 a}+\frac{\ln \left(\tan \left(\frac{x}{2}\right)+1\right) b^{2}}{a^{3}}+\frac{1}{2 a\left(\tan \left(\frac{x}{2}\right)-1\right)^{2}} \\
& +\frac{1}{2 a\left(\tan \left(\frac{x}{2}\right)-1\right)}+\frac{b}{a^{2}\left(\tan \left(\frac{x}{2}\right)-1\right)}-\frac{\ln \left(\tan \left(\frac{x}{2}\right)-1\right)}{2 a}-\frac{\ln \left(\tan \left(\frac{x}{2}\right)-1\right) b^{2}}{a^{3}}-\frac{2 b \sqrt{a^{2}+b^{2}} \operatorname{arctanh}\left(\frac{2 \tan \left(\frac{x}{2}\right) b-2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a^{3}}
\end{aligned}
$$

Test results for the 19 problems in "4.4.10 ( $\mathrm{c}+\mathrm{d} \mathrm{x})^{\wedge} \mathrm{m}(\mathrm{a}+\mathrm{b} \cot )^{\wedge} \mathrm{n} . \mathrm{txt}$ "
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \cot (b x+a) d x
$$

Optimal(type 4, 82 leaves, 6 steps):

$$
-\frac{\mathrm{I} x^{4}}{4}+\frac{x^{3} \ln \left(1-\mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{b}-\frac{3 \mathrm{I} x^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{2 b^{2}}+\frac{3 x \operatorname{poly} \log \left(3, \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{2 b^{3}}+\frac{3 \mathrm{I} \operatorname{poly} \log \left(4, \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b^{4}}
$$

$$
\begin{aligned}
& \text { Result (type 4, 239 leaves) : } \\
& \begin{array}{l}
\mathrm{I} x^{4} \\
4 \\
\quad+\frac{\ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}+1\right) x^{3}}{b}+\frac{\ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right) x^{3}}{b}+\frac{\ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right) a^{3}}{b^{4}}-\frac{3 \mathrm{I} \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(b x+a)}\right) x^{2}}{b^{2}}-\frac{3 \mathrm{I} \operatorname{poly} \log \left(2,-\mathrm{e}^{\mathrm{I}(b x+a)}\right) x^{2}}{b^{2}}-\frac{2 \mathrm{I} a^{3} x}{b^{3}} \\
\quad-\frac{a^{3} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}-1\right)}{b^{4}}+\frac{2 a^{3} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{4}}-\frac{3 \mathrm{I} a^{4}}{2 b^{4}}+\frac{6 \mathrm{I} \operatorname{poly} \log \left(4,-\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{4}}+\frac{6 \mathrm{I} \operatorname{poly} \log \left(4, \mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{4}}+\frac{6 \operatorname{polylog}\left(3,-\mathrm{e}^{\mathrm{I}(b x+a)}\right) x}{b^{3}} \\
\quad+\frac{6 \operatorname{poly} \log \left(3, \mathrm{e}^{\mathrm{I}(b x+a)}\right) x}{b^{3}}
\end{array}
\end{aligned}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int x \cot (b x+a) d x
$$

Optimal(type 4, 43 leaves, 4 steps):

$$
-\frac{\mathrm{I} x^{2}}{2}+\frac{x \ln \left(1-\mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{b}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{2 b^{2}}
$$

Result(type 4, 149 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} x^{2}}{2}-\frac{2 \mathrm{I} a x}{b}-\frac{\mathrm{I} a^{2}}{b^{2}}+\frac{\ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right) x}{b}+\frac{a \ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{2}}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{2}}+\frac{\ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}+1\right) x}{b}-\frac{\mathrm{I} p o \operatorname{ly} \log \left(2,-\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{2}} \\
& \quad+\frac{2 a \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{2}}-\frac{a \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}-1\right)}{b^{2}}
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cot (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 66 leaves, 6 steps):

$$
-\frac{\mathrm{I} x^{2}}{b}-\frac{x^{3}}{3}-\frac{x^{2} \cot (b x+a)}{b}+\frac{2 x \ln \left(1-\mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{b^{2}}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{b^{3}}
$$

Result(type 4, 182 leaves):

$$
\begin{aligned}
-\frac{x^{3}}{3} & -\frac{2 \mathrm{I} x^{2}}{b\left(\mathrm{e}^{2 \mathrm{I}(b x+a)}-1\right)}-\frac{2 \mathrm{I} x^{2}}{b}-\frac{4 \mathrm{I} a x}{b^{2}}-\frac{2 \mathrm{I} a^{2}}{b^{3}}+\frac{2 \ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right) x}{b^{2}}+\frac{2 a \ln \left(1-\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{3}}-\frac{2 \mathrm{I} p o \operatorname{ly} \log \left(2, \mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{3}}+\frac{2 \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}+1\right) x}{b^{2}} \\
& -\frac{2 \mathrm{I} \operatorname{poly} \log \left(2,-\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{3}}+\frac{4 a \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{b^{3}}-\frac{2 a \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}-1\right)}{b^{3}}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{2}}{(a+\mathrm{I} a \cot (f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 166 leaves, 8 steps):

$$
-\frac{\mathrm{I} d^{2} \mathrm{e}^{2 \mathrm{I} e+2 \mathrm{I} f x}}{8 a^{2} f^{3}}+\frac{\mathrm{I} d^{2} \mathrm{e}^{4 \mathrm{I} e+4 \mathrm{I} f x}}{128 a^{2} f^{3}}-\frac{d \mathrm{e}^{2 \mathrm{I} e+2 \mathrm{I} f x}(d x+c)}{4 a^{2} f^{2}}+\frac{d \mathrm{e}^{4 \mathrm{I} e+4 \mathrm{I} f x}(d x+c)}{32 a^{2} f^{2}}+\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I} e+2 \mathrm{I} f x}(d x+c)^{2}}{4 a^{2} f}-\frac{\mathrm{I} \mathrm{e}^{4 \mathrm{I} e+4 \mathrm{I} f x}(d x+c)^{2}}{16 a^{2} f}+\frac{(d x+c)^{3}}{12 a^{2} d}
$$

Result(type 3, 1042 leaves):
$-\frac{1}{f^{3} a^{2}}\left(-\mathrm{I} c d e f \sin (f x+e)^{4}+4 \mathrm{I} c d f\left(\frac{(f x+e) \sin (f x+e)^{4}}{4}+\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{16}-\frac{3 f x}{32}-\frac{3 e}{32}\right)+\frac{\mathrm{I} c^{2} f^{2} \sin (f x+e)^{4}}{2}\right.$

$$
\begin{aligned}
& +2 \mathrm{I} d^{2}\left(\frac{(f x+e)^{2} \sin (f x+e)^{4}}{4}-\frac{(f x+e)\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)}{2}+\frac{3(f x+e)^{2}}{32}-\frac{\sin (f x+e)^{4}}{32}\right. \\
& \left.-\frac{3 \sin (f x+e)^{2}}{32}\right)+\frac{\mathrm{I} d^{2} e^{2} \sin (f x+e)^{4}}{2}-4 \mathrm{I} d^{2} e\left(\frac{(f x+e) \sin (f x+e)^{4}}{4}+\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{16}-\frac{3 f x}{32}-\frac{3 e}{32}\right) \\
& +2 d^{2}\left((f x+e)^{2}\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)-\frac{(f x+e) \cos (f x+e)^{2}}{8}+\frac{\cos (f x+e) \sin (f x+e)}{16}+\frac{7 f x}{64}+\frac{7 e}{64}-\frac{(f x+e)^{3}}{12}\right. \\
& -(f x+e)^{2}\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-\frac{(f x+e) \sin (f x+e)^{4}}{8} \\
& \left.-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{32}\right)+4 c d f\left((f x+e)\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)-\frac{(f x+e)^{2}}{16}+\frac{\sin (f x+e)^{2}}{16}-(f x\right. \\
& \left.+e)\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-\frac{\sin (f x+e)^{4}}{16}\right)-4 d^{2} e\left((f x+e)\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)\right. \\
& \left.-\frac{(f x+e)^{2}}{16}+\frac{\sin (f x+e)^{2}}{16}-(f x+e)\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-\frac{\sin (f x+e)^{4}}{16}\right)+2 c^{2} f^{2}( \\
& \left.-\frac{\cos (f x+e)^{3} \sin (f x+e)}{4}+\frac{\cos (f x+e) \sin (f x+e)}{8}+\frac{f x}{8}+\frac{e}{8}\right)-4 c d e f\left(-\frac{\cos (f x+e)^{3} \sin (f x+e)}{4}+\frac{\cos (f x+e) \sin (f x+e)}{8}+\frac{f x}{8}+\frac{e}{8}\right) \\
& +2 d^{2} e^{2}\left(-\frac{\cos (f x+e)^{3} \sin (f x+e)}{4}+\frac{\cos (f x+e) \sin (f x+e)}{8}+\frac{f x}{8}+\frac{e}{8}\right)-d^{2}\left((f x+e)^{2}\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)\right. \\
& \left.-\frac{(f x+e) \cos (f x+e)^{2}}{2}+\frac{\cos (f x+e) \sin (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}-\frac{(f x+e)^{3}}{3}\right)-2 c d f\left((f x+e)\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)\right. \\
& \left.-\frac{(f x+e)^{2}}{4}+\frac{\sin (f x+e)^{2}}{4}\right)+2 d^{2} e\left((f x+e)\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)-\frac{(f x+e)^{2}}{4}+\frac{\sin (f x+e)^{2}}{4}\right)-c^{2} f^{2}( \\
& \left.\left.-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)+2 c d e f\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)-d^{2} e^{2}\left(-\frac{\cos (f x+e) \sin (f x+e)}{2}+\frac{f x}{2}+\frac{e}{2}\right)\right)
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{(a+\mathrm{I} a \cot (f x+e))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 181 leaves, 11 steps):

$$
\begin{aligned}
& \frac{11 \mathrm{I} d x}{96 a^{3} f}-\frac{d x^{2}}{16 a^{3}}+\frac{x(d x+c)}{8 a^{3}}+\frac{d}{36 f^{2}(a+\mathrm{I} a \cot (f x+e))^{3}}-\frac{\mathrm{I}(d x+c)}{6 f(a+\mathrm{I} a \cot (f x+e))^{3}}+\frac{5 d}{96 a f^{2}(a+\mathrm{I} a \cot (f x+e))^{2}}-\frac{\mathrm{I}(d x+c)}{8 a f(a+\mathrm{I} a \cot (f x+e))^{2}} \\
& \quad+\frac{11 d}{96 f^{2}\left(a^{3}+\mathrm{I} a^{3} \cot (f x+e)\right)}-\frac{\mathrm{I}(d x+c)}{8 f\left(a^{3}+\mathrm{I} a^{3} \cot (f x+e)\right)}
\end{aligned}
$$

Result(type 3, 652 leaves):

$$
\begin{aligned}
& \frac{1}{f^{2} a^{3}}\left(4 \mathrm { I } d \left(\frac{(f x+e) \sin (f x+e)^{4}}{4}+\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{16}-\frac{f x}{24}-\frac{e}{24}-\frac{(f x+e) \sin (f x+e)^{6}}{6}\right.\right. \\
& \left.-\frac{\left(\sin (f x+e)^{5}+\frac{5 \sin (f x+e)^{3}}{4}+\frac{15 \sin (f x+e)}{8}\right) \cos (f x+e)}{36}\right)+4 \mathrm{I} c f\left(-\frac{\sin (f x+e)^{2} \cos (f x+e)^{4}}{6}-\frac{\cos (f x+e)^{4}}{12}\right)-4 \mathrm{I} d e( \\
& \left.-\frac{\sin (f x+e)^{2} \cos (f x+e)^{4}}{6}-\frac{\cos (f x+e)^{4}}{12}\right)-4 d\left((f x+e)\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-\frac{(f x+e)^{2}}{32}\right. \\
& \left.+\frac{\sin (f x+e)^{4}}{96}+\frac{\sin (f x+e)^{2}}{32}-(f x+e)\left(-\frac{\left(\sin (f x+e)^{5}+\frac{5 \sin (f x+e)^{3}}{4}+\frac{15 \sin (f x+e)}{8}\right) \cos (f x+e)}{6}+\frac{5 f x}{16}+\frac{5 e}{16}\right)-\frac{\sin (f x+e)^{6}}{36}\right) \\
& -4 c f\left(-\frac{\cos (f x+e)^{3} \sin (f x+e)^{3}}{6}-\frac{\cos (f x+e)^{3} \sin (f x+e)}{8}+\frac{\cos (f x+e) \sin (f x+e)}{16}+\frac{f x}{16}+\frac{e}{16}\right)+4 d e\left(-\frac{\cos (f x+e)^{3} \sin (f x+e)^{3}}{6}\right. \\
& \left.-\frac{\cos (f x+e)^{3} \sin (f x+e)}{8}+\frac{\cos (f x+e) \sin (f x+e)}{16}+\frac{f x}{16}+\frac{e}{16}\right)-3 \mathrm{I} d\left(\frac{(f x+e) \sin (f x+e)^{4}}{4}\right. \\
& \left.+\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{16}-\frac{3 f x}{32}-\frac{3 e}{32}\right)-\frac{3 \mathrm{I} c f \sin (f x+e)^{4}}{4}+\frac{3 \mathrm{I} d e \sin (f x+e)^{4}}{4}+d((f x+e)( \\
& \left.\left.-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-\frac{3(f x+e)^{2}}{16}+\frac{\sin (f x+e)^{4}}{16}+\frac{3 \sin (f x+e)^{2}}{16}\right)+c f( \\
& \left.\left.-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)-d e\left(-\frac{\left(\sin (f x+e)^{3}+\frac{3 \sin (f x+e)}{2}\right) \cos (f x+e)}{4}+\frac{3 f x}{8}+\frac{3 e}{8}\right)\right)
\end{aligned}
$$

Problem 12: Unable to integrate problem.

$$
\int \frac{(d x+c)^{m}}{(a+\mathrm{I} a \cot (f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 159 leaves, 4 steps):

$$
\frac{(d x+c)^{1+m}}{4 a^{2} d(1+m)}+\frac{\mathrm{I} 2^{-2-m} \mathrm{e}^{2 \mathrm{I}\left(e-\frac{c f}{d}\right)}(d x+c)^{m} \Gamma\left(1+m, \frac{-2 \mathrm{I} f(d x+c)}{d}\right)}{a^{2} f\left(\frac{-\mathrm{I} f(d x+c)}{d}\right)^{m}}-\frac{\mathrm{I} 4^{-2-m} \mathrm{e}^{4 \mathrm{I}\left(e-\frac{c f}{d}\right)}(d x+c)^{m} \Gamma\left(1+m, \frac{-4 \mathrm{I} f(d x+c)}{d}\right)}{a^{2} f\left(\frac{-\mathrm{I} f(d x+c)}{d}\right)^{m}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{(d x+c)^{m}}{(a+\mathrm{I} a \cot (f x+e))^{2}} \mathrm{~d} x
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)(a+b \cot (f x+e)) \mathrm{d} x
$$

Optimal(type 4, 71 leaves, 6 steps):

$$
\frac{a(d x+c)^{2}}{2 d}-\frac{\mathrm{I} b(d x+c)^{2}}{2 d}+\frac{b(d x+c) \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f}-\frac{\mathrm{I} b d \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{2}}
$$

Result(type 4, 239 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} b d \operatorname{polylog}\left(2,-\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{\mathrm{I} b d x^{2}}{2}+\frac{a d x^{2}}{2}+a c x-\frac{2 b c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f}+\frac{b c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right)}{f}+\frac{b c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f}+\mathrm{I} b c x \\
& \quad-\frac{\mathrm{I} b d \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{2 \mathrm{I} b d e x}{f}+\frac{b d \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) x}{f}+\frac{b d \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) e}{f^{2}}-\frac{\mathrm{I} b d e^{2}}{f^{2}}+\frac{b d \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right) x}{f}+\frac{2 b d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}} \\
& \quad-\frac{b d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f^{2}}
\end{aligned}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3}(a+b \cot (f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 535 leaves, 28 steps):

$$
\begin{aligned}
& \frac{3 \mathrm{I} b^{3} d(d x+c)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{2}}+\frac{\mathrm{I} b^{3}(d x+c)^{4}}{4 d}-\frac{b^{3}(d x+c)^{3}}{2 f}+\frac{a^{3}(d x+c)^{4}}{4 d}-\frac{3 \mathrm{I} b^{3} d^{3} \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{4}}-\frac{3 a b^{2}(d x+c)^{4}}{4 d} \\
& -\frac{3 \mathrm{I} b^{3} d^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{4 f^{4}}-\frac{3 b^{3} d(d x+c)^{2} \cot (f x+e)}{2 f^{2}}-\frac{3 a b^{2}(d x+c)^{3} \cot (f x+e)}{f}-\frac{b^{3}(d x+c)^{3} \cot (f x+e)^{2}}{2 f} \\
& +\frac{3 b^{3} d^{2}(d x+c) \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f^{3}}+\frac{9 a b^{2} d(d x+c)^{2} \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f^{2}}+\frac{3 a^{2} b(d x+c)^{3} \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f}-\frac{b^{3}(d x+c)^{3} \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f} \\
& -\frac{9 \mathrm{I} a^{2} b d(d x+c)^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(f x+e)}\right)}{2 f^{2}}-\frac{3 \mathrm{I} a^{2} b(d x+c)^{4}}{4 d}-\frac{9 \mathrm{I} a b^{2} d^{2}(d x+c) \operatorname{polylog}\left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f^{3}}-\frac{3 \mathrm{I} a b^{2}(d x+c)^{3}}{f} \\
& +\frac{9 a b^{2} d^{3} \operatorname{polylog}\left(3, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{4}}+\frac{9 a^{2} b d^{2}(d x+c) \operatorname{polylog}\left(3, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{3}}-\frac{3 b^{3} d^{2}(d x+c) \operatorname{polylog}\left(3, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{3}}
\end{aligned}
$$

$$
+\frac{9 \mathrm{I} a^{2} b d^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{4 f^{4}}-\frac{3 \mathrm{I} b^{3} d(d x+c)^{2}}{2 f^{2}}
$$

Result(type ?, 3112 leaves): Display of huge result suppressed!
Problem 17: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)(a+b \cot (f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 248 leaves, 16 steps):

```
\(-3 a b^{2} c x-\frac{b^{3} d x}{2 f}-\frac{3 a b^{2} d x^{2}}{2}+\frac{a^{3}(d x+c)^{2}}{2 d}-\frac{3 \mathrm{I} a^{2} b(d x+c)^{2}}{2 d}+\frac{\mathrm{I} b^{3}(d x+c)^{2}}{2 d}-\frac{b^{3} d \cot (f x+e)}{2 f^{2}}-\frac{3 a b^{2}(d x+c) \cot (f x+e)}{f}\)
    \(-\frac{b^{3}(d x+c) \cot (f x+e)^{2}}{2 f}+\frac{3 a^{2} b(d x+c) \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f}-\frac{b^{3}(d x+c) \ln \left(1-\mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{f}+\frac{3 a b^{2} d \ln (\sin (f x+e))}{f^{2}}\)
    \(-\frac{3 \mathrm{I} a^{2} b d \operatorname{poly} \log \left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{2}}+\frac{\mathrm{I} b^{3} d \operatorname{polylog}\left(2, \mathrm{e}^{2 \mathrm{I}(f x+e)}\right)}{2 f^{2}}\)
```

Result(type 4, 744 leaves):
$-3 a b^{2} c x-\frac{3 a b^{2} d x^{2}}{2}+\frac{3 b^{2} a d \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f^{2}}-\frac{6 b a^{2} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f}+\frac{3 b a^{2} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right)}{f}+\frac{3 b a^{2} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f}$

$$
+\frac{\mathrm{I} b^{3} d \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}+\frac{\mathrm{I} b^{3} d \operatorname{poly} \log \left(2,-\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{2 b^{3} d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}+\frac{b^{3} d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f^{2}}+\frac{\mathrm{I} b^{3} d e^{2}}{f^{2}}-\frac{6 b^{2} a d \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}
$$

$$
+\frac{3 b^{2} a d \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right)}{f^{2}}-\frac{b^{3} \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) d e}{f^{2}}-\frac{b^{3} \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right) d x}{f}-\frac{b^{3} \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) d x}{f}-\frac{3 \mathrm{I} a^{2} b d x^{2}}{2}-\mathrm{I} c b^{3} x+a^{3} c x+\frac{a^{3} d x^{2}}{2}
$$

$$
-\frac{6 \mathrm{I} b a^{2} d e x}{f}+\frac{2 b^{3} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f}-\frac{b^{3} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right)}{f}-\frac{b^{3} c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f}+\frac{\mathrm{I} b^{3} d x^{2}}{2}
$$

$$
+\frac{b^{2}\left(-6 \mathrm{I} a d f x \mathrm{e}^{2 \mathrm{I}(f x+e)}-6 \mathrm{I} a c f \mathrm{e}^{2 \mathrm{I}(f x+e)}+2 b d f x \mathrm{e}^{2 \mathrm{I}(f x+e)}+6 \mathrm{I} a d f x-\mathrm{I} b d \mathrm{e}^{2 \mathrm{I}(f x+e)}+2 b c f \mathrm{e}^{2 \mathrm{I}(f x+e)}+6 \mathrm{I} a c f+\mathrm{I} b d\right)}{f^{2}\left(\mathrm{e}^{2 \mathrm{I}(f x+e)}-1\right)^{2}}
$$

$$
+\frac{6 b a^{2} d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{3 b a^{2} d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}-1\right)}{f^{2}}-\frac{3 \mathrm{I} b a^{2} d \operatorname{poly} \log \left(2, \mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{3 \mathrm{I} b a^{2} d \operatorname{poly} \log \left(2,-\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{f^{2}}-\frac{3 \mathrm{I} b a^{2} d e^{2}}{f^{2}}+\frac{2 \mathrm{I} b^{3} d e x}{f}
$$

$$
+\frac{3 b \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) a^{2} d e}{f^{2}}+\frac{3 b \ln \left(1-\mathrm{e}^{\mathrm{I}(f x+e)}\right) a^{2} d x}{f}+\frac{3 b \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}+1\right) a^{2} d x}{f}+3 \mathrm{I} c b a^{2} x
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{(a+b \cot (f x+e))^{2}} d x
$$

Optimal(type 4, 198 leaves, 5 steps):

$$
-\frac{(d x+c)^{2}}{2\left(a^{2}+b^{2}\right) d}+\frac{(-2 a d f x-2 a c f+b d)^{2}}{4 a(a-\mathrm{I} b)^{2}(\mathrm{I} b+a) d f^{2}}+\frac{b(d x+c)}{\left(a^{2}+b^{2}\right) f(a+b \cot (f x+e))}+\frac{b(-2 a d f x-2 a c f+b d) \ln \left(1-\frac{(\mathrm{I} b+a) \mathrm{e}^{2 \mathrm{I}(f x+e)}}{a-\mathrm{I} b}\right)}{\left(a^{2}+b^{2}\right)^{2} f^{2}}
$$

$$
+\frac{\mathrm{I} a b d \operatorname{polylog}\left(2, \frac{(\mathrm{I} b+a) \mathrm{e}^{2 \mathrm{I}(f x+e)}}{a-\mathrm{I} b}\right)}{\left(a^{2}+b^{2}\right)^{2} f^{2}}
$$

Result(type 4, 989 leaves):

Test results for the 30 problems in "4.4.2.1 (a+b cot) ${ }^{\text {m }}$ ( $\left.\mathrm{c}+\mathrm{d} \cot \right)^{\wedge} \mathrm{n} . \mathrm{tx} \mathrm{t}$ "
Problem 1: Unable to integrate problem.

$$
\int(a+\mathrm{I} a \cot (d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 42 leaves, 2 steps):

$$
\frac{\frac{\mathrm{I}}{2}(a+\mathrm{I} a \cot (d x+c))^{n} \text { hypergeom }\left([1, n],[1+n], \frac{1}{2}+\frac{\mathrm{I} \cot (d x+c)}{2}\right)}{d n}
$$

Result(type 8, 16 leaves):

$$
\int(a+\mathrm{I} a \cot (d x+c))^{n} \mathrm{~d} x
$$

[^0]\[

$$
\begin{aligned}
& \frac{d x^{2}}{2\left(2 \mathrm{I} a b+a^{2}-b^{2}\right)}+\frac{c x}{2 \mathrm{I} a b+a^{2}-b^{2}}+\frac{2 \mathrm{I} b^{2}(d x+c)}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}\left(b \mathrm{e}^{2 \mathrm{I}(f x+e)}-\mathrm{I} a \mathrm{e}^{2 \mathrm{I}(f x+e)}+b+\mathrm{I} a\right)} \\
& -\frac{2 \mathrm{I} b a^{2} c \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right)}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)}+\frac{2 \mathrm{I} b a d \ln \left(1-\frac{(\mathrm{I} b+a) \mathrm{e}^{2 \mathrm{I}(f x+e)}}{a-\mathrm{I} b}\right) e}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}-\frac{b^{3} d \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)} \\
& +\frac{\mathrm{I} b^{2} d \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right) a}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)}+\frac{2 \mathrm{I} b a^{2} d e \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)} \\
& +\frac{2 b^{2} a c \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right)}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)}-\frac{2 \mathrm{I} b^{2} d \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)}+\frac{4 \mathrm{I} b a c \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)} \\
& -\frac{2 b^{2} a d e \ln \left(a \mathrm{e}^{2 \mathrm{I}(f x+e)}+\mathrm{I} b \mathrm{e}^{2 \mathrm{I}(f x+e)}-a+\mathrm{I} b\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)(\mathrm{I} b+a)}+\frac{2 \mathrm{I} b a d \ln \left(1-\frac{(\mathrm{I} b+a) \mathrm{e}^{2 \mathrm{I}(f x+e)}}{a-\mathrm{I} b}\right) x}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}-\frac{4 \mathrm{I} b a d e \ln \left(\mathrm{e}^{\mathrm{I}(f x+e)}\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(\mathrm{I} b-a)} \\
& +\frac{2 b a d x^{2}}{(b+\mathrm{I} a)(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}+\frac{4 b a d e x}{(b+\mathrm{I} a) f(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}+\frac{2 b a d e^{2}}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}+\frac{b a d \operatorname{polylog}\left(2, \frac{(\mathrm{I} b+a) \mathrm{e}^{2 \mathrm{I}(f x+e)}}{a-\mathrm{I} b}\right)}{(b+\mathrm{I} a) f^{2}(b-\mathrm{I} a)^{2}(a-\mathrm{I} b)}
\end{aligned}
$$
\]

$$
\int(e \cot (d x+c))^{3 / 2}(a+a \cot (d x+c)) \mathrm{d} x
$$

Optimal(type 3, 77 leaves, 4 steps):

$$
-\frac{2 a(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{a e^{3 / 2} \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{d}-\frac{2 a e \sqrt{e \cot (d x+c)}}{d}
$$

Result(type 3, 362 leaves):

$$
\begin{aligned}
& \left.-\frac{2 a(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{2 a e \sqrt{e \cot (d x+c)}}{d}+\frac{a e\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{4 d}\right) \\
& \left.+\frac{a e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d}-\frac{a e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d}\right) \\
& + \\
& \left.\quad \frac{a e^{2} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{4 d\left(e^{2}\right)^{1 / 4}}+\frac{a e^{2} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d\left(e^{2}\right)^{1 / 4}}\right) \\
& -
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+a \cot (d x+c)}{(e \cot (d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 82 leaves, 4 steps):

$$
\frac{2 a}{3 d e(e \cot (d x+c))^{3 / 2}}-\frac{a \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{d e^{5 / 2}}+\frac{2 a}{d e^{2} \sqrt{e \cot (d x+c)}}
$$

Result(type 3, 373 leaves):
$\frac{2 a}{d e^{2} \sqrt{e \cot (d x+c)}}+\frac{2 a}{3 d e(e \cot (d x+c))^{3 / 2}}+\frac{a\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{4 d e^{3}}$


Problem 5: Result more than twice size of optimal antiderivative.

$$
\int(e \cot (d x+c))^{5 / 2}(a+a \cot (d x+c))^{3} \mathrm{~d} x
$$

Optimal (type 3, 157 leaves, 7 steps):
$\frac{4 a^{3} e(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{4 a^{3}(e \cot (d x+c))^{5 / 2}}{5 d}-\frac{40 a^{3}(e \cot (d x+c))^{7 / 2}}{63 d e}-\frac{2(e \cot (d x+c))^{7 / 2}\left(a^{3}+a^{3} \cot (d x+c)\right)}{9 d e}$

$$
+\frac{2 a^{3} e^{5 / 2} \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}) \sqrt{2}}\right.}{d}+\frac{4 a^{3} e^{2} \sqrt{e \cot (d x+c)}}{d}
$$

Result (type 3, 445 leaves):
$-\frac{2 a^{3}(e \cot (d x+c))^{9 / 2}}{9 d e^{2}}-\frac{6 a^{3}(e \cot (d x+c))^{7 / 2}}{7 d e}-\frac{4 a^{3}(e \cot (d x+c))^{5 / 2}}{5 d}+\frac{4 a^{3} e(e \cot (d x+c))^{3 / 2}}{3 d}+\frac{4 a^{3} e^{2} \sqrt{e \cot (d x+c)}}{d}$

$$
-\frac{a^{3} e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d}-\frac{a^{3} e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}
$$

$$
+\frac{a^{3} e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}-\frac{a^{3} e^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{\left.e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}\right)}\right.}{2 d\left(e^{2}\right)^{1 / 4}}
$$

$$
-\frac{a^{3} e^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}+\frac{a^{3} e^{3} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}
$$

[^1]$$
\int(e \cot (d x+c))^{3 / 2}(a+a \cot (d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 3, 135 leaves, 6 steps):

$$
\begin{array}{r}
-\frac{4 a^{3}(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{32 a^{3}(e \cot (d x+c))^{5 / 2}}{35 d e}-\frac{2(e \cot (d x+c))^{5 / 2}\left(a^{3}+a^{3} \cot (d x+c)\right)}{7 d e} \\
-\frac{2 a^{3} e^{3 / 2} \operatorname{arctanh}\left(\frac{(\sqrt{e}+\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{d}+\frac{4 a^{3} e \sqrt{e \cot (d x+c)}}{d}
\end{array}
$$

Result(type 3, 418 leaves):

$$
\begin{aligned}
&-\frac{2 a^{3}(e \cot (d x+c))^{7 / 2}}{7 d e^{2}}-\frac{6 a^{3}(e \cot (d x+c))^{5 / 2}}{5 d e}-\frac{4 a^{3}(e \cot (d x+c))^{3 / 2}}{3 d}+\frac{4 a^{3} e \sqrt{e \cot (d x+c)}}{d} \\
&-\frac{a^{3} e\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d}-\frac{a^{3} e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}
\end{aligned}
$$

$$
+\frac{a^{3} e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}+\frac{a^{3} e^{2} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d\left(e^{2}\right)^{1 / 4}}
$$

$$
+\frac{a^{3} e^{2} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}-\frac{a^{3} e^{2} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{e \cot (d x+c)}(a+a \cot (d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 3, 117 leaves, 5 steps):
$-\frac{8 a^{3}(e \cot (d x+c))^{3 / 2}}{5 d e}-\frac{2(e \cot (d x+c))^{3 / 2}\left(a^{3}+a^{3} \cot (d x+c)\right)}{5 d e}-\frac{2 a^{3} \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}) \sqrt{2} \sqrt{e}}\right.}{d}-\frac{4 a^{3} \sqrt{e \cot (d x+c)}}{d}$
Result(type 3, 390 leaves):

$$
\begin{aligned}
& -\frac{2 a^{3}(e \cot (d x+c))^{5 / 2}}{5 d e^{2}}-\frac{2 a^{3}(e \cot (d x+c))^{3 / 2}}{d e}-\frac{4 a^{3} \sqrt{e \cot (d x+c)}}{d} \\
& \quad+\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{\left.e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}\right)}\right.}{2 d}+\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d}+\frac{a^{3} e \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d\left(e^{2}\right)^{1 / 4}} \\
& +\frac{a^{3} e \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}-\frac{a^{3} e \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+a \cot (d x+c))^{3}}{\sqrt{e \cot (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 98 leaves, 4 steps):


Result(type 3, 378 leaves):

$$
\begin{aligned}
& -\frac{2 a^{3}(e \cot (d x+c))^{3 / 2}}{3 d e^{2}}-\frac{6 a^{3} \sqrt{e \cot (d x+c)}}{d e}+\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d e} \\
& +\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e}-\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e} \\
& -\frac{a^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d\left(e^{2}\right)^{1 / 4}}-\frac{a^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}} \\
& +\frac{a^{3} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}}
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+a \cot (d x+c))^{3}}{(e \cot (d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 99 leaves, 4 steps):

$$
\frac{2 a^{3} \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{d e^{3 / 2}}+\frac{2\left(a^{3}+a^{3} \cot (d x+c)\right)}{d e \sqrt{e \cot (d x+c)}}-\frac{4 a^{3} \sqrt{e \cot (d x+c)}}{d e^{2}}
$$

Result(type 3, 387 leaves):

$$
\begin{aligned}
-\frac{2 a^{3} \sqrt{e \cot (d x+c)}}{d e^{2}}-\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d e^{2}}-\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e^{2}} \\
+\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e^{2}}-\frac{a^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d e\left(e^{2}\right)^{1 / 4}} \\
-\frac{a^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e\left(e^{2}\right)^{1 / 4}}+\frac{a^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e\left(e^{2}\right)^{1 / 4}}+\frac{2 a^{3}}{d e \sqrt{e \cot (d x+c)}}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{(e \cot (d x+c))^{5 / 2}}{a+a \cot (d x+c)} d x
$$

Optimal(type 3, 92 leaves, 7 steps):

$$
\frac{e^{5 / 2} \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{a d}-\frac{e^{5 / 2} \arctan \left(\frac{(\sqrt{e}-\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{2 a d}-\frac{2 e^{2} \sqrt{e \cot (d x+c)}}{a d}
$$

Result(type 3, 393 leaves):

$$
\begin{aligned}
\left.-\frac{2 e^{2} \sqrt{e \cot (d x+c)}}{a d}+\frac{e^{5 / 2} \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{a d}+\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{8 d a}\right) \\
+\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{4 d a}-\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{4 d a} \\
+\frac{e^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{8 d a\left(e^{2}\right)^{1 / 4}}+\frac{e^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{4 d a\left(e^{2}\right)^{1 / 4}}
\end{aligned}
$$



Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{(e \cot (d x+c))^{5 / 2}}{(a+a \cot (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 135 leaves, 8 steps):

$$
-\frac{e^{5 / 2} \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{8 a^{3} d}+\frac{e^{5 / 2} \operatorname{arctanh}\left(\frac{(\sqrt{e}+\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}) \sqrt{2}}\right.}{4 a^{3} d}-\frac{5 e^{2} \sqrt{e \cot (d x+c)}}{8 a^{3} d(1+\cot (d x+c))}+\frac{e^{2} \sqrt{e \cot (d x+c)}}{4 a d(a+a \cot (d x+c))^{2}}
$$

Result(type 3, 439 leaves):

$$
-\frac{5 e^{3}(e \cot (d x+c))^{3 / 2}}{8 d a^{3}(e \cot (d x+c)+e)^{2}}-\frac{3 e^{4} \sqrt{e \cot (d x+c)}}{8 d a^{3}(e \cot (d x+c)+e)^{2}}-\frac{e^{5 / 2} \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{8 a^{3} d}
$$

$$
+\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{16 d a^{3}}+\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3}}
$$

$$
-\frac{e^{2}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3}}-\frac{e^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{16 d a^{3}\left(e^{2}\right)^{1 / 4}}
$$

$$
-\frac{e^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3}\left(e^{2}\right)^{1 / 4}}+\frac{e^{3} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3}\left(e^{2}\right)^{1 / 4}}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(e \cot (d x+c))^{3 / 2}(a+a \cot (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 156 leaves, 9 steps):
$\frac{31 \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{8 a^{3} d e^{3 / 2}}+\frac{\operatorname{arctanh}\left(\frac{(\sqrt{e}+\cot (d x+c) \sqrt{e}) \sqrt{2}}{2 \sqrt{e \cot (d x+c)}}\right) \sqrt{2}}{4 a^{3} d e^{3 / 2}}+\frac{27}{8 a^{3} d e \sqrt{e \cot (d x+c)}}-\frac{9}{8 a^{3} d e(1+\cot (d x+c)) \sqrt{e \cot (d x+c)}}$
$-\frac{1}{4 a d e(a+a \cot (d x+c))^{2} \sqrt{e \cot (d x+c)}}$
Result(type 3, 457 leaves):

$$
\frac{11(e \cot (d x+c))^{3 / 2}}{8 d a^{3} e(e \cot (d x+c)+e)^{2}}+\frac{13 \sqrt{e \cot (d x+c)}}{8 d a^{3}(e \cot (d x+c)+e)^{2}}+\frac{31 \arctan \left(\frac{\sqrt{e \cot (d x+c)}}{\sqrt{e}}\right)}{8 a^{3} d e^{3 / 2}}+\frac{2}{a^{3} d e \sqrt{e \cot (d x+c)}}
$$

$$
+\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{16 d a^{3} e^{2}}+\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3} e^{2}}
$$

$$
-\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{-\sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}
$$

$$
8 d a^{3} e^{2} \quad 16 d a^{3} e\left(e^{2}\right)^{1 / 4}
$$

$$
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3} e\left(e^{2}\right)^{1 / 4}}+\frac{\sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{8 d a^{3} e\left(e^{2}\right)^{1 / 4}}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \cot (x)^{2} \sqrt{1+\cot (x)} \mathrm{d} x
$$

Optimal(type 3, 160 leaves, 12 steps):

$$
\begin{aligned}
&\left.-\frac{2(1+\cot (x))^{3 / 2}}{3}-\frac{\arctan \left(\frac{-2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{2}\right) \arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}} \\
& 2 \frac{\ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{2 \sqrt{2+2 \sqrt{2}}}-\frac{\ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{2 \sqrt{2+2 \sqrt{2}}}
\end{aligned}
$$

Result(type 3, 355 leaves):
$-\frac{2(1+\cot (x))^{3 / 2}}{3}+\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}$

$$
\begin{aligned}
& -\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}-\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}})}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}} \\
& -\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}} \\
& +\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}-\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}
\end{aligned}
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)^{2}}{\sqrt{1+\cot (x)}} \mathrm{d} x
$$

Optimal(type 3, 152 leaves, 12 steps):
$-2 \sqrt{1+\cot (x)}-\frac{\ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4 \sqrt{1+\sqrt{2}}}+\frac{\ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4 \sqrt{1+\sqrt{2}}}$


Result(type 3, 441 leaves):
$-2 \sqrt{1+\cot (x)}-\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}+\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{8}$
$+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}}-\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}$
$+\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2}}{\sqrt{-2+2 \sqrt{2}}}+\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{4}$

$$
\begin{aligned}
& -\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{8}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}} \\
& -\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2}}{\sqrt{-2+2 \sqrt{2}}}
\end{aligned}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)^{2}}{(1+\cot (x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 97 leaves, 6 steps):

$$
\frac{1}{\sqrt{1+\cot (x)}}+\frac{\arctan \left(\frac{4+\cot (x)(2-\sqrt{2})-3 \sqrt{2}}{2 \sqrt{1+\cot (x)} \sqrt{-7+5 \sqrt{2}}}\right) \sqrt{-2+2 \sqrt{2}}}{4}+\frac{\operatorname{arctanh}\left(\frac{4+3 \sqrt{2}+\cot (x)(2+\sqrt{2})}{2 \sqrt{1+\cot (x)} \sqrt{7+5 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{4}
$$

Result(type 3, 248 leaves):
$-\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}-\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{8}+\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2}}{2 \sqrt{-2+2 \sqrt{2}}}$
$-\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}+\frac{\sqrt{2+2 \sqrt{2}} \ln (1+\cot (x)+\sqrt{2}+\sqrt{1+\cot (x)} \sqrt{2+2 \sqrt{2}})}{8}$
$+\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2}}{2 \sqrt{-2+2 \sqrt{2}}}-\frac{\arctan \left(\frac{2 \sqrt{1+\cot (x)}+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{2 \sqrt{-2+2 \sqrt{2}}}+\frac{1}{\sqrt{1+\cot (x)}}$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)^{2}}{(1+\cot (x))^{5 / 2}} d x
$$

Optimal(type 3, 101 leaves, 8 steps):

$$
\frac{1}{3(1+\cot (x))^{3 / 2}}-\frac{1}{\sqrt{1+\cot (x)}}+\frac{\arctan \left(\frac{3+\cot (x)(1-\sqrt{2})-2 \sqrt{2}}{\sqrt{1+\cot (x)} \sqrt{-14+10 \sqrt{2}}}\right) \sqrt{\sqrt{2}-1}}{4}+\frac{\operatorname{arctanh}\left(\frac{3+2 \sqrt{2}+\cot (x)(1+\sqrt{2})}{\sqrt{1+\cot (x)} \sqrt{14+10 \sqrt{2}}}\right) \sqrt{1+\sqrt{2}}}{4}
$$

$$
\text { Result(type 3, } 264 \text { leaves): }
$$



Problem 18: Result more than twice size of optimal antiderivative.

$$
\int(e \cot (d x+c))^{3 / 2}(a+b \cot (d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 3, 260 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{4 a b(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{2 b^{2}(e \cot (d x+c))^{5 / 2}}{5 d e}-\frac{\left(a^{2}+2 a b-b^{2}\right) e^{3 / 2} \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d} \\
& +\frac{\left(a^{2}+2 a b-b^{2}\right) e^{3 / 2} \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d}-\frac{\left(a^{2}-2 a b-b^{2}\right) e^{3 / 2} \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d} \\
& +\frac{\left(a^{2}-2 a b-b^{2}\right) e^{3 / 2} \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d}-\frac{2\left(a^{2}-b^{2}\right) e \sqrt{e \cot (d x+c)}}{d}
\end{aligned}
$$

Result(type 3, 580 leaves):
$-\frac{2 b^{2}(e \cot (d x+c))^{5 / 2}}{5 d e}-\frac{4 a b(e \cot (d x+c))^{3 / 2}}{3 d}-\frac{2 e a^{2} \sqrt{e \cot (d x+c)}}{d}+\frac{2 e b^{2} \sqrt{e \cot (d x+c)}}{d}$

$$
\begin{aligned}
& +\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2}}{2 d}-\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{2}}{2 d} \\
& -\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2}}{2 d}+\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{2}}{2 d} \\
& +\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{2}}{4 d} \\
& -\frac{e\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{2 d}}{e^{2} a b \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)} e^{2 d\left(e^{2}\right)^{1 / 4}}+\frac{e^{2} a b \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}} \\
& +\frac{e^{2} a b \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d\left(e^{2}\right)^{1 / 4}} \\
& -\frac{e^{2}}{}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \cot (d x+c))^{2}}{(e \cot (d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 218 leaves, 11 steps):

$$
\begin{aligned}
& \left.\left.\left(a^{2}-2 a b-b^{2}\right) \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}\right)+\frac{\left(a^{2}-2 a b-b^{2}\right) \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d e^{3 / 2}}+\frac{2 d e^{3 / 2}}{4 d e^{3 / 2}}\right) \\
& +\frac{\left(a^{2}+2 a b-b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d e^{3 / 2}} \\
& -\frac{\left(a^{2}+2 a b-b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{}+\frac{2 a^{2}}{d e \sqrt{e \cot (d x+c)}}
\end{aligned}
$$

Result(type 3, 537 leaves):


Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \cot (d x+c))^{3}}{\sqrt{e \cot (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 258 leaves, 12 steps):

$$
\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d \sqrt{e}}-\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d \sqrt{e}}
$$

$$
+\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d \sqrt{e}}
$$

$$
-\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d \sqrt{e}}-\frac{16 a b^{2} \sqrt{e \cot (d x+c)}}{3 d e}
$$

$$
-\frac{2 b^{2}(a+b \cot (d x+c)) \sqrt{e \cot (d x+c)}}{3 d e}
$$

Result(type 3, 724 leaves):
$-\frac{2 b^{3}(e \cot (d x+c))^{3 / 2}}{3 d e^{2}}-\frac{6 a b^{2} \sqrt{e \cot (d x+c)}}{d e}-\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d e}$

$$
\begin{aligned}
& +\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e}+\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d e} \\
& -\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e}-\frac{a^{3}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{4 d e} \\
& +\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a b^{2}}{4 d e} \\
& -\frac{3 \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{2} b}{4 d\left(e^{2}\right)^{1 / 4}}+\frac{\sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{3}}{4 d\left(e^{2}\right)^{1 / 4}} \\
& -\frac{3 \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2 d\left(e^{2}\right)^{1 / 4}}+\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 d\left(e^{2}\right)^{1 / 4}}+\frac{3 \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2 d\left(e^{2}\right)^{1 / 4}} \\
& \frac{\sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{} \\
& 2 d\left(e^{2}\right)^{1 / 4}
\end{aligned}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \cot (d x+c))^{3}}{(e \cot (d x+c))^{3 / 2}} d x
$$

Optimal(type 3, 262 leaves, 12 steps):

$$
\begin{aligned}
&-\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d e^{3 / 2}}+\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d e^{3 / 2}} \\
& \quad+\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d e^{3 / 2}} \\
&-\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d e^{3 / 2}}+\frac{2 a^{2}(a+b \cot (d x+c))}{d e \sqrt{e \cot (d x+c)}-\frac{2 b\left(a^{2}+b^{2}\right) \sqrt{e \cot (d x+c)}}{d e^{2}}}
\end{aligned}
$$

Result(type 3, 741 leaves):


$$
+\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2 d e^{2}}-\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 d e^{2}}
$$

$$
-\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{2} b}{4 d e^{2}}
$$

$$
+\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{3}}{4 d e^{2}}+\frac{a^{3} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{4 d e\left(e^{2}\right)^{1 / 4}}
$$

$$
-\frac{3 \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a b^{2}}{4 d e\left(e^{2}\right)^{1 / 4}}+\frac{a^{3} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d e\left(e^{2}\right)^{1 / 4}}
$$

$$
-\frac{3 \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e\left(e^{2}\right)^{1 / 4}}-\frac{a^{3} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{2 d e\left(e^{2}\right)^{1 / 4}}+\frac{3 \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e\left(e^{2}\right)^{1 / 4}}
$$

$$
+\frac{2 a^{3}}{d e \sqrt{e \cot (d x+c)}}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \cot (d x+c))^{3}}{(e \cot (d x+c))^{5 / 2}} d x
$$

Optimal(type 3, 258 leaves, 12 steps):

$$
\frac{2 a^{2}(a+b \cot (d x+c))}{3 d e(e \cot (d x+c))^{3 / 2}}-\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d e^{5 / 2}}
$$

$$
+\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2 d e^{5 / 2}}
$$

$$
\begin{aligned}
& -\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d e^{5 / 2}} \\
& +\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4 d e^{5 / 2}}+\frac{16 a^{2} b}{3 d e^{2} \sqrt{e \cot (d x+c)}}
\end{aligned}
$$

Result(type 3, 742 leaves):
$\frac{2 a^{3}}{3 d e(e \cot (d x+c))^{3 / 2}}+\frac{6 a^{2} b}{d e^{2} \sqrt{e \cot (d x+c)}}+\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{3}}{2 d e^{3}}$

$$
-\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e^{3}}-\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{3}}{2 d e^{3}}
$$

$$
+\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d e^{3}}+\frac{\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{3}}{4 d e^{3}}
$$

$$
-\frac{3\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a b^{2}}{4 d e^{3}}
$$

$$
+\frac{3 \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{2} b}{4 d e^{2}\left(e^{2}\right)^{1 / 4}}-\frac{\sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{3}}{4 d e^{2}\left(e^{2}\right)^{1 / 4}}
$$

$$
+\frac{3 \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}
$$

$$
+\frac{\sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 d e^{2}\left(e^{2}\right)^{1 / 4}}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(e \cot (d x+c))^{3 / 2}(a+b \cot (d x+c))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 372 leaves, 16 steps):

$$
\begin{aligned}
& \frac{b^{5 / 2}\left(7 a^{2}+3 b^{2}\right) \arctan \left(\frac{\sqrt{b} \sqrt{e \cot (d x+c)}}{\sqrt{a} \sqrt{e}}\right)}{a^{5 / 2}\left(a^{2}+b^{2}\right)^{2} d e^{3 / 2}}-\frac{\left(a^{2}+2 a b-b^{2}\right) \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2\left(a^{2}+b^{2}\right)^{2} d e^{3 / 2}} \\
& +\frac{\left(a^{2}+2 a b-b^{2}\right) \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2\left(a^{2}+b^{2}\right)^{2} d e^{3 / 2}}+\frac{\left(a^{2}-2 a b-b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4\left(a^{2}+b^{2}\right)^{2} d e^{3 / 2}} \\
& -\frac{\left(a^{2}-2 a b-b^{2}\right) \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4\left(a^{2}+b^{2}\right)^{2} d e^{3 / 2}}+\frac{2 a^{2}+3 b^{2}}{a^{2}\left(a^{2}+b^{2}\right) d e \sqrt{e \cot (d x+c)}} \\
& -\frac{b^{2}}{a\left(a^{2}+b^{2}\right) d e(a+b \cot (d x+c)) \sqrt{e \cot (d x+c)}}
\end{aligned}
$$

Result(type 3, 802 leaves):

$$
\begin{aligned}
& \frac{b^{3} \sqrt{e \cot (d x+c)}}{d e\left(a^{2}+b^{2}\right)^{2}(e \cot (d x+c) b+a e)}+\frac{b^{5} \sqrt{e \cot (d x+c)}}{d e a^{2}\left(a^{2}+b^{2}\right)^{2}(e \cot (d x+c) b+a e)}+\frac{7 b^{3} \arctan \left(\frac{\sqrt{e \cot (d x+c)} b}{\sqrt{a e b}}\right)}{d e\left(a^{2}+b^{2}\right)^{2} \sqrt{a e b}}+\frac{3 b^{5} \arctan \left(\frac{\sqrt{e \cot (d x+c)} b}{\sqrt{a e b}}\right)}{d e a^{2}\left(a^{2}+b^{2}\right)^{2} \sqrt{a e b}} \\
& +\frac{2}{d e a^{2} \sqrt{e \cot (d x+c)}}+\frac{a b\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{2 d e^{2}\left(a^{2}+b^{2}\right)^{2}} \\
& +\frac{a b\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e^{2}\left(a^{2}+b^{2}\right)^{2}}-\frac{a b\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right)}{d e^{2}\left(a^{2}+b^{2}\right)^{2}} \\
& \left.+\frac{\sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right)}{}\right) a^{2} \quad \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{2} \\
& 4 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4} \\
& 4 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4} \\
& +\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2}}{2 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4}}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{2}}{2 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4}}-\frac{\sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2}}{2 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4}} \\
& +\frac{\sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{2}}{2 d e\left(a^{2}+b^{2}\right)^{2}\left(e^{2}\right)^{1 / 4}}
\end{aligned}
$$

[^2]$$
\int \frac{(e \cot (d x+c))^{9 / 2}}{(a+b \cot (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 454 leaves, 17 steps):

$$
\begin{array}{r}
\frac{a^{5 / 2}\left(15 a^{4}+46 a^{2} b^{2}+63 b^{4}\right) e^{9 / 2} \arctan \left(\frac{\sqrt{b} \sqrt{e \cot (d x+c)}}{\sqrt{a} \sqrt{e}}\right)}{4 b^{7 / 2}\left(a^{2}+b^{2}\right)^{3} d}+\frac{a^{2} e^{2}(e \cot (d x+c))^{5 / 2}}{2 b\left(a^{2}+b^{2}\right) d(a+b \cot (d x+c))^{2}}+\frac{a^{2}\left(5 a^{2}+13 b^{2}\right) e^{3}(e \cot (d x+c))^{3 / 2}}{4 b^{2}\left(a^{2}+b^{2}\right)^{2} d(a+b \cot (d x+c))} \\
+\frac{(a-b)\left(a^{2}+4 a b+b^{2}\right) e^{9 / 2} \arctan \left(1-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2} \quad(a-b)\left(a^{2}+4 a b+b^{2}\right) e^{9 / 2} \arctan \left(1+\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\sqrt{e}}\right) \sqrt{2}}{2\left(a^{2}+b^{2}\right)^{3} d}-\frac{\left(a^{2}+b^{2}\right)^{3} d}{4\left(a^{2}+b^{2}\right)^{3} d} \\
-\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) e^{9 / 2} \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}-\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4} \\
+\frac{(a+b)\left(a^{2}-4 a b+b^{2}\right) e^{9 / 2} \ln (\sqrt{e}+\cot (d x+c) \sqrt{e}+\sqrt{2} \sqrt{e \cot (d x+c)}) \sqrt{2}}{4\left(a^{2}+b^{2}\right)^{3} d}-\frac{\left(15 a^{4}+31 a^{2} b^{2}+8 b^{4}\right) e^{4} \sqrt{e \cot (d x+c)}}{4 b^{3}\left(a^{2}+b^{2}\right)^{2} d}
\end{array}
$$

Result(type 3, 1253 leaves):

$$
\begin{aligned}
& -\frac{2 e^{4} \sqrt{e \cot (d x+c)}}{d b^{3}}-\frac{9 e^{5} a^{7}(e \cot (d x+c))^{3 / 2}}{4 d b^{2}\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}}-\frac{13 e^{5} a^{5}(e \cot (d x+c))^{3 / 2}}{2 d\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}}-\frac{17 e^{5} a^{3} b^{2}(e \cot (d x+c))^{3 / 2}}{4 d\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}} \\
& -\frac{7 e^{6} a^{8} \sqrt{e \cot (d x+c)}}{4 d b^{3}\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}}-\frac{11 e^{6} a^{6} \sqrt{e \cot (d x+c)}}{2 d b\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}}-\frac{15 e^{6} a^{4} b \sqrt{e \cot (d x+c)}}{4 d\left(a^{2}+b^{2}\right)^{3}(e \cot (d x+c) b+a e)^{2}} \\
& +\frac{15 e^{5} a^{7} \arctan \left(\frac{\sqrt{e \cot (d x+c)} b}{\sqrt{a e b}}\right)}{4 d b^{3}\left(a^{2}+b^{2}\right)^{3} \sqrt{a e b}}+\frac{23 e^{5} a^{5} \arctan \left(\frac{\sqrt{e \cot (d x+c)} b}{\sqrt{a e b}}\right)}{2 d b\left(a^{2}+b^{2}\right)^{3} \sqrt{a e b}}+\frac{63 e^{5} a^{3} b \arctan \left(\frac{\sqrt{e \cot (d x+c)} b}{\sqrt{a e b}}\right)}{4 d\left(a^{2}+b^{2}\right)^{3} \sqrt{a e b}} \\
& -\frac{3 e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2 d\left(a^{2}+b^{2}\right)^{3}}+\frac{e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 d\left(a^{2}+b^{2}\right)^{3}} \\
& +\frac{3 e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{2} b}{2 d\left(a^{2}+b^{2}\right)^{3}}-\frac{e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) b^{3}}{2 d\left(a^{2}+b^{2}\right)^{3}} \\
& -3 e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{2} b \\
& 4 d\left(a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{e^{4}\left(e^{2}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) b^{3}}{4 d\left(a^{2}+b^{2}\right)^{3}} \\
& -\frac{e^{5} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a^{3}}{4 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}}+\frac{3 e^{5} \sqrt{2} \ln \left(\frac{e \cot (d x+c)-\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}{e \cot (d x+c)+\left(e^{2}\right)^{1 / 4} \sqrt{e \cot (d x+c)} \sqrt{2}+\sqrt{e^{2}}}\right) a b^{2}}{4 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}} \\
& -\frac{e^{5} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{3}}{2 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}}+\frac{3 e^{5} \sqrt{2} \arctan \left(\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}}+\frac{e^{5} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a^{3}}{2 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}} \\
& -\frac{3 e^{5} \sqrt{2} \arctan \left(-\frac{\sqrt{2} \sqrt{e \cot (d x+c)}}{\left(e^{2}\right)^{1 / 4}}+1\right) a b^{2}}{2 d\left(a^{2}+b^{2}\right)^{3}\left(e^{2}\right)^{1 / 4}}
\end{aligned}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{1-\mathrm{I} \cot (d x+c)}{\sqrt{a+b \cot (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 36 leaves, 3 steps):

$$
\frac{-2 \mathrm{I} \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (d x+c)}}{\sqrt{\mathrm{I} b+a}}\right)}{d \sqrt{\mathrm{I} b+a}}
$$

Result(type 3, 1621 leaves):

$$
\begin{aligned}
& \frac{\operatorname{In}\left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) a b^{2}}{d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right)}} \begin{array}{l}
2 d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a} \sqrt{a^{2}+b^{2}} \\
-\frac{\mathrm{In}\left(b \cot (d x+c)+a+\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}+\sqrt{a^{2}+b^{2}}\right) a}{} \\
+\frac{\mathrm{I} \ln \left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) b^{2}}{2 d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right)} \\
-\frac{\mathrm{I} \ln \left(b \cot (d x+c)+a+\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}+\sqrt{a^{2}+b^{2}}\right)}{2 d \sqrt{2 \sqrt{a^{2}+b^{2}}}+2 a}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\ln \left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) a b}{} \\
& 2 d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \\
& +\frac{\ln \left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) a^{2} b}{} \\
& 2 d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a} \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \\
& +\frac{\ln \left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) b^{3}}{} \\
& 2 d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a} \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \\
& +\frac{\mathrm{I} \ln \left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) a^{2}}{+} \\
& d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \\
& \arctan \left(\frac{\sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-2 \sqrt{a+b \cot (d x+c)}}{\sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}\right) a b \\
& d\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a} \\
& +\frac{\arctan \left(\frac{\sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-2 \sqrt{a+b \cot (d x+c)}}{\sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}\right) a^{2} b}{d \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}+\frac{\arctan \left(\frac{\sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-2 \sqrt{a+b \cot (d x+c)}}{\sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}\right) b^{3}}{d \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}} \\
& +\frac{\operatorname{In}\left(\sqrt{a+b \cot (d x+c)} \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-b \cot (d x+c)-a-\sqrt{a^{2}+b^{2}}\right) a^{3}}{}+\frac{\operatorname{Iarctan}\left(\frac{2 \sqrt{a+b \cot (d x+c)}+\sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}}{\sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}\right)}{} \\
& d \sqrt{2 \sqrt{a^{2}+b^{2}}+2 a} \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \\
& d \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a} \\
& \frac{\operatorname{Iarctan}\left(\frac{\sqrt{2 \sqrt{a^{2}+b^{2}}+2 a}-2 \sqrt{a+b \cot (d x+c)}}{\sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}}\right) b^{2}}{d\left(\sqrt{a^{2}+b^{2}} a+a^{2}+b^{2}\right) \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}} \\
& \left.\operatorname{I\operatorname {arctan}(\frac {2\sqrt {a+b\operatorname {cot}(dx+c)}+\sqrt {2\sqrt {a^{2}+b^{2}}+2a}}{\sqrt {2\sqrt {a^{2}+b^{2}}-2a}})a\quad \operatorname {arctan}(\frac {2\sqrt {a+b\operatorname {cot}(dx+c)}+\sqrt {2\sqrt {a^{2}+b^{2}}+2a}}{\sqrt {2\sqrt {a^{2}+b^{2}}-2a}})b}\right) \\
& d \sqrt{a^{2}+b^{2}} \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a} \quad-\cdots \sqrt{a^{2}+b^{2}} \sqrt{2 \sqrt{a^{2}+b^{2}}-2 a}
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cot (d x+c)}{a+b \cot (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 59 leaves, 2 steps):

$$
\frac{(A a+B b) x}{a^{2}+b^{2}}-\frac{(A b-B a) \ln (b \cos (d x+c)+a \sin (d x+c))}{d\left(a^{2}+b^{2}\right)}
$$

Result(type 3, 186 leaves):

```
\(\frac{\ln \left(\cot (d x+c)^{2}+1\right) A b}{2 d\left(a^{2}+b^{2}\right)}-\frac{\ln \left(\cot (d x+c)^{2}+1\right) B a}{2 d\left(a^{2}+b^{2}\right)}-\frac{A \pi a}{2 d\left(a^{2}+b^{2}\right)}-\frac{B \pi b}{2 d\left(a^{2}+b^{2}\right)}+\frac{A \operatorname{arccot}(\cot (d x+c)) a}{d\left(a^{2}+b^{2}\right)}+\frac{B \operatorname{arccot}(\cot (d x+c)) b}{d\left(a^{2}+b^{2}\right)}\)
    \(-\frac{\ln (a+b \cot (d x+c)) A b}{d\left(a^{2}+b^{2}\right)}+\frac{\ln (a+b \cot (d x+c)) B a}{d\left(a^{2}+b^{2}\right)}\)
```

Problem 28: Result more than twice size of optimal antiderivative.
$\int(b \cot (d x+c)-a) \sqrt{a+b \cot (d x+c)} \mathrm{d} x$
Optimal(type 3, 341 leaves, 13 steps):


Result(type ?, 2284 leaves): Display of huge result suppressed!
Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cot (d x+c)}{\sqrt{a+b \cot (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 84 leaves, 7 steps):

$$
\frac{(\mathrm{I} A+B) \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (d x+c)}}{\sqrt{a-\mathrm{I} b}}\right)}{d \sqrt{a-\mathrm{I} b}}-\frac{(\mathrm{I} A-B) \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (d x+c)}}{\sqrt{\mathrm{I} b+a}}\right)}{d \sqrt{\mathrm{I} b+a}}
$$

Result(type ?, 3975 leaves): Display of huge result suppressed!
Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cot (d x+c)}{(a+b \cot (d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 118 leaves, 8 steps):

$$
\frac{(\mathrm{I} A+B) \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (d x+c)}}{\sqrt{a-\mathrm{I} b}}\right)}{(a-\mathrm{I} b)^{3 / 2} d}-\frac{(\mathrm{I} A-B) \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (d x+c)}}{\sqrt{\mathrm{I} b+a}}\right)}{(\mathrm{I} b+a)^{3 / 2} d}+\frac{2(A b-B a)}{\left(a^{2}+b^{2}\right) d \sqrt{a+b \cot (d x+c)}}
$$

Result(type ?, 7950 leaves): Display of huge result suppressed!
Test results for the 20 problems in "4.4.7 (d trig)^m (a+b (c cot)^n)^p.txt"
Problem 1: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{A+C \cot (d x+c)^{2}}{\sqrt{b \tan (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 182 leaves, 15 steps):

$$
\begin{aligned}
-\frac{(A-C) \arctan \left(1-\frac{\sqrt{2} \sqrt{b \tan (d x+c)}}{\sqrt{b}}\right) \sqrt{2}}{2 d \sqrt{b}}+\frac{(A-C) \arctan \left(1+\frac{\sqrt{2} \sqrt{b \tan (d x+c)}}{\sqrt{b}}\right) \sqrt{2}}{2 d \sqrt{b}} \\
-\frac{(A-C) \ln (\sqrt{b}-\sqrt{2} \sqrt{b \tan (d x+c)}+\sqrt{b} \tan (d x+c)) \sqrt{2}}{4 d \sqrt{b}}+\frac{(A-C) \ln (\sqrt{b}+\sqrt{2} \sqrt{b \tan (d x+c)}+\sqrt{b} \tan (d x+c)) \sqrt{2}}{4 d \sqrt{b}}
\end{aligned}
$$

$$
-\frac{2 b C}{3 d(b \tan (d x+c))^{3 / 2}}
$$

Result(type ?, 2493 leaves): Display of huge result suppressed!
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \cot (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 136 leaves, 6 steps):

$$
\frac{x}{(a-b)^{3}}+\frac{b \cot (d x+c)}{4 a(a-b) d\left(a+b \cot (d x+c)^{2}\right)^{2}}+\frac{(7 a-3 b) b \cot (d x+c)}{8 a^{2}(a-b)^{2} d\left(a+b \cot (d x+c)^{2}\right)}+\frac{\left(15 a^{2}-10 a b+3 b^{2}\right) \arctan \left(\frac{\cot (d x+c) \sqrt{b}}{\sqrt{a}}\right) \sqrt{b}}{8 a^{5 / 2}(a-b)^{3} d}
$$

Result(type 3, 362 leaves):
$\frac{7 b^{2} \cot (d x+c)^{3}}{8 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2}}-\frac{5 b^{3} \cot (d x+c)^{3}}{4 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2} a}+\frac{3 b^{4} \cot (d x+c)^{3}}{8 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2} a^{2}}$

$$
\begin{aligned}
& +\frac{9 b a \cot (d x+c)}{8 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2}}-\frac{7 b^{2} \cot (d x+c)}{4 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2}}+\frac{5 b^{3} \cot (d x+c)}{8 d(a-b)^{3}\left(a+b \cot (d x+c)^{2}\right)^{2} a}+\frac{15 b \arctan \left(\frac{\cot (d x+c) b}{\sqrt{a b}}\right)}{8 d(a-b)^{3} \sqrt{a b}} \\
& -\frac{5 b^{2} \arctan \left(\frac{\cot (d x+c) b}{\sqrt{a b}}\right)}{4 d(a-b)^{3} a \sqrt{a b}}+\frac{3 b^{3} \arctan \left(\frac{\cot (d x+c) b}{\sqrt{a b}}\right)}{8 d(a-b)^{3} a^{2} \sqrt{a b}}-\frac{\pi}{2 d(a-b)^{3}}+\frac{\operatorname{arccot}(\cot (d x+c))}{d(a-b)^{3}}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \cot (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 6 steps):

$$
-\arctan \left(\frac{\cot (x) \sqrt{a-b}}{\sqrt{a+b \cot (x)^{2}}}\right) \sqrt{a-b}-\operatorname{arctanh}\left(\frac{\cot (x) \sqrt{b}}{\sqrt{a+b \cot (x)^{2}}}\right) \sqrt{b}
$$

Result(type 3, 136 leaves):
$-\sqrt{b} \ln \left(\cot (x) \sqrt{b}+\sqrt{a+b \cot (x)^{2}}\right)+\frac{\sqrt{b^{4}(a-b)} \arctan \left(\frac{b^{2}(a-b) \cot (x)}{\sqrt{b^{4}(a-b)} \sqrt{a+b \cot (x)^{2}}}\right)}{b(a-b)}-\frac{a \sqrt{b^{4}(a-b)} \arctan \left(\frac{b^{2}(a-b) \cot (x)}{\left.\sqrt{b^{4}(a-b)} \sqrt{a+b \cot (x)^{2}}\right)}\right.}{b^{2}(a-b)}$

Problem 11: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int\left(a+b \cot (x)^{2}\right)^{3 / 2} \tan (x) \mathrm{d} x
$$

Optimal(type 3, 61 leaves, 8 steps):

$$
a^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (x)^{2}}}{\sqrt{a}}\right)-(a-b)^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (x)^{2}}}{\sqrt{a-b}}\right)-b \sqrt{a+b \cot (x)^{2}}
$$

Result(type ?, 2627 leaves): Display of huge result suppressed!
Problem 16: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{\tan (x)}{\sqrt{a+b \cot (x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (x)^{2}}}{\sqrt{a}}\right)}{\sqrt{a}}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \cot (x)^{2}}}{\sqrt{a-b}}\right)}{\sqrt{a-b}}
$$

Result(type 4, 375 leaves):
$-\frac{1}{\sqrt{\frac{2 \sqrt{a} \sqrt{a-b}-2 a+b}{b}} \sqrt{\frac{a \cos (x)^{2}-b \cos (x)^{2}-a}{\cos (x)^{2}-1}}(\cos (x)-1)}\left(2 \sqrt{2} \sqrt{\frac{\cos (x) \sqrt{a-b} \sqrt{a}-\sqrt{a} \sqrt{a-b}-\cos (x) a+b \cos (x)+a}{b(\cos (x)+1)}}\right.$

$$
\sqrt{-\frac{2(\cos (x) \sqrt{a-b} \sqrt{a}-\sqrt{a} \sqrt{a-b}+\cos (x) a-b \cos (x)-a)}{b(\cos (x)+1)}}\left(-\operatorname{EllipticPi}\left(\frac{(\cos (x)-1) \sqrt{\frac{2 \sqrt{a} \sqrt{a-b}-2 a+b}{b}}}{\sin (x)}\right.\right.
$$

$$
\left.\frac{b}{2 \sqrt{a} \sqrt{a-b}-2 a+b}, \frac{\sqrt{-\frac{2 \sqrt{a} \sqrt{a-b}+2 a-b}{b}}}{\sqrt{\frac{2 \sqrt{a} \sqrt{a-b}-2 a+b}{b}}}\right)+ \text { EllipticPi }\left(\frac{(\cos (x)-1) \sqrt{\frac{2 \sqrt{a} \sqrt{a-b}-2 a+b}{b}}}{\sin (x)},-\frac{b}{2 \sqrt{a} \sqrt{a-b}-2 a+b}\right.
$$

$$
\left.\left.\left.\frac{\sqrt{-\frac{2 \sqrt{a} \sqrt{a-b}+2 a-b}{b}}}{\sqrt{\frac{2 \sqrt{a} \sqrt{a-b}-2 a+b}{b}}}\right)\right) \sin (x)\right)
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)}{\left(a+b \cot (x)^{4}\right)^{5 / 2}} d x
$$

Optimal(type 3, 105 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{a-b \cot (x)^{2}}{\sqrt{a+b} \sqrt{a+b \cot (x)^{4}}}\right)}{2(a+b)^{5 / 2}}+\frac{-a-b \cot (x)^{2}}{6 a(a+b)\left(a+b \cot (x)^{4}\right)^{3 / 2}}+\frac{-3 a^{2}-b(5 a+2 b) \cot (x)^{2}}{6 a^{2}(a+b)^{2} \sqrt{a+b \cot (x)^{4}}}
$$

Result(type 3, 601 leaves):

$$
\begin{aligned}
& b^{2} \ln \left(\frac{2 a+2 b-2\left(\cot (x)^{2}+1\right) b+2 \sqrt{a+b} \sqrt{b\left(\cot (x)^{2}+1\right)^{2}-2\left(\cot (x)^{2}+1\right) b+a+b}}{\cot (x)^{2}+1}\right) \\
& 2(\sqrt{-a b}+b)^{2}(\sqrt{-a b}-b)^{2} \sqrt{a+b} \\
& -\frac{\sqrt{b\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)^{2}+2 \sqrt{-a b}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)}}{24(\sqrt{-a b}+b) a \sqrt{-a b}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)^{2}}-\frac{\sqrt{b\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)^{2}+2 \sqrt{-a b}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)}}{24(\sqrt{-a b}+b) a^{2}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)} \\
& -\frac{\sqrt{b\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)^{2}-2 \sqrt{-a b}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)}}{24(\sqrt{-a b}-b) a \sqrt{-a b}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)^{2}}+\frac{\sqrt{b\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)^{2}-2 \sqrt{-a b}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)}}{24(\sqrt{-a b}-b) a^{2}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)} \\
& +\frac{(2 \sqrt{-a b}-b) \sqrt{b\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)^{2}-2 \sqrt{-a b}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)}}{8(\sqrt{-a b}-b)^{2} a^{2}\left(\cot (x)^{2}+\frac{\sqrt{-a b}}{b}\right)} \\
& -\underline{(2 \sqrt{-a b}+b) \sqrt{b\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)^{2}+2 \sqrt{-a b}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)}} \\
& 8(\sqrt{-a b}+b)^{2} a^{2}\left(\cot (x)^{2}-\frac{\sqrt{-a b}}{b}\right)
\end{aligned}
$$

Test results for the 11 problems in "4.4.9 trig^m (a+b $\left.\cot ^{\wedge} n+c \cot ^{\wedge}(2 \mathrm{n})\right)^{\wedge} \mathrm{p} . \mathrm{txt}$ "
Problem 1: Humongous result has more than 20000 leaves.

$$
\int \frac{\cot (e x+d)^{5}}{\sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 484 leaves, 15 steps):


$$
\begin{aligned}
& \operatorname{arctanh}\left(\frac{\left(a-c+b \cot (e x+d)-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right) \sqrt{2}}{2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}}}\right) \sqrt{a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2} \\
&+\frac{2 e \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}{\operatorname{arctanh}\left(\frac{\left(a-c+b \cot (e x+d)+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right) \sqrt{2}}{2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}}}\right) \sqrt{a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}} \\
& 2 e \sqrt{a^{2}-2 a c+b^{2}+c^{2}}
\end{aligned}
$$

Result(type ?, 9581342 leaves): Display of huge result suppressed!
Problem 2: Humongous result has more than 20000 leaves.


Optimal(type 3, 261 leaves, 6 steps):

$$
\begin{aligned}
& \operatorname{arctanh}\left(\frac{\left(a-c+b \cot (e x+d)-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right) \sqrt{2}}{\left.2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right)}\right) \sqrt{a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2} \\
& \quad+\frac{\operatorname{arctanh}\left(\frac{\left(a-c+b \cot (e x+d)+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right.}{\left.2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right) \sqrt{2}}\right) \sqrt{a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}}{2 e \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}
\end{aligned}
$$

Result(type ?, 9338542 leaves): Display of huge result suppressed!
Problem 3: Humongous result has more than 20000 leaves.

$$
\int \cot (e x+d)^{3} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 668 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{b\left(-4 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{b+2 c \cot (e x+d)}{2 \sqrt{c} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}\right)}{16 c^{5 / 2} e}-\frac{\left(a+b \cot (e x+d)+c \cot (e x+d)^{2}\right)^{3 / 2}}{3 c e} \\
& +\frac{b \operatorname{arctanh}\left(\frac{b+2 c \cot (e x+d)}{\left.2 \sqrt{c} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}\right)}\right.}{2 e \sqrt{c}}+\frac{\sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}{e} \\
& +\frac{b(b+2 c \cot (e x+d)) \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}{8 c^{2} e}
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{l}
-\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}+b \cot (e x+d) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}+(a-c)\left(a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) /\right.\right. \\
\left.\left(2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a^{2}+b^{2}+c\left(c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)}\right)\right) \\
\left.\sqrt{a^{2}+b^{2}+c\left(c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)} \sqrt{2}\right) \\
+\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} e}\left(\operatorname { a r c t a n } \left(\left(\left(b^{2}+(a-c)\left(a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-b \cot (e x+d) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right) \sqrt{2}\right) /\right.\right. \\
\left({ }_{2}\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a^{2}+b^{2}+c}\left(c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right.\right.
\end{array}\right)\right)\right) .
$$

Result(type ?, 17766957 leaves): Display of huge result suppressed!
Problem 4: Humongous result has more than 20000 leaves.

$$
\int \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \tan (e x+d)^{3} \mathrm{~d} x
$$

Optimal(type 3, 620 leaves, 21 steps):

$$
\begin{aligned}
& -\frac{\left(-4 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{2 a+b \cot (e x+d)}{2 \sqrt{a} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}\right)}{8 a^{3 / 2} e}-\frac{\operatorname{arctanh}\left(\frac{2 a+b \cot (e x+d)}{\left.2 \sqrt{a} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}\right) \sqrt{a}}\right.}{e} \\
& +\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}+b \cot (e x+d) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}+(a-c)\left(a-c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) /\right.\right. \\
& \left.\left(2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a^{2}+b^{2}+c\left(c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)}\right)\right) \\
& \left.\sqrt{a^{2}+b^{2}+c\left(c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)} \sqrt{2}\right) \\
& -\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} e}\left(\operatorname { a r c t a n } \left(\left(\left(b^{2}+(a-c)\left(a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-b \cot (e x+d) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right) \sqrt{2}\right) /\right.\right. \\
& \left.\left({ }_{2}\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{1 / 4} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{a^{2}+b^{2}+c\left(c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)}\right)\right) \\
& \left.\sqrt{a^{2}+b^{2}+c\left(c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-a\left(2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)} \sqrt{2}\right) \\
& +\frac{(2 a+b \cot (e x+d)) \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \tan (e x+d)^{2}}{4 a e}
\end{aligned}
$$

Result(type ?, 2698877 leaves): Display of huge result suppressed!
Problem 5: Humongous result has more than 20000 leaves.

$$
\int \frac{\tan (e x+d)}{\left(a+b \cot (e x+d)+c \cot (e x+d)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 684 leaves, 13 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{2 a+b \cot (e x+d)}{2 \sqrt{a} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}\right)}{a^{3 / 2} e}-\frac{2\left(b^{2}-2 a c+b c \cot (e x+d)\right)}{a\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}
$$

$$
\begin{aligned}
& +\frac{2\left(a\left(b^{2}-2(a-c) c\right)+b c(a+c) \cot (e x+d)\right)}{\left(b^{2}+(a-c)^{2}\right)\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}} \\
& -\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{3 / 2} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}-(a-c)\left(a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-b \cot (e x+d)(2 a-2 c\right.\right.\right.\right. \\
& \left.\left.\left.+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) \\
& \left.\left(2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{2 a-2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}-(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right)\right) \\
& \left.\sqrt{2 a-2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}-(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}\right) \\
& +\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{3 / 2} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}-b \cot (e x+d)\left(2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-(a-c)(a-c\right.\right.\right.\right. \\
& \left.\left.\left.+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) / \\
& \left.\left(2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}+(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right)\right) \\
& \left.\sqrt{2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}+(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}\right) \\
& \text { Result(type ?, 21253698 leaves) }) \text { Display of huge result suppressed! }
\end{aligned}
$$

Problem 6: Attempted integration timed out after 120 seconds.

$$
\int \frac{\tan (e x+d)^{3}}{\left(a+b \cot (e x+d)+c \cot (e x+d)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 923 leaves, 18 steps):

$$
\begin{aligned}
& -\frac{\operatorname{arctanh}\left(\frac{2 a+b \cot (e x+d)}{2 \sqrt{a} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}\right)}{a^{3 / 2} e}+\frac{3\left(-4 a c+5 b^{2}\right) \operatorname{arctanh}\left(\frac{2 a+b \cot (e x+d)}{2 \sqrt{a} \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}\right)}{8 a^{7 / 2} e} \\
& \quad+\frac{2\left(b^{2}-2 a c+b c \cot (e x+d)\right)}{a\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}}-\frac{2\left(a\left(b^{2}-2(a-c) c\right)+b c(a+c) \cot (e x+d)\right)}{\left(b^{2}+(a-c)^{2}\right)\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}} \\
& \quad+\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{3 / 2} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}-(a-c)\left(a-c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-b \cot (e x+d)(2 a-2 c\right.\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) / \\
& \left.\left(2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{2 a-2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}-(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right)\right) \\
& \left.\sqrt{2 a-2 c+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}-(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}\right) \\
& -\frac{1}{2\left(a^{2}-2 a c+b^{2}+c^{2}\right)^{3 / 2} e}\left(\operatorname { a r c t a n h } \left(\left(\left(b^{2}-b \cot (e x+d)\left(2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)-(a-c)(a-c\right.\right.\right.\right. \\
& \left.\left.\left.+\sqrt{a^{2}-2 a c+b^{2}+c^{2}}\right)\right) \sqrt{2}\right) / \\
& \left.\left(2 \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \sqrt{2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}+(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}}\right)\right) \\
& \left.\sqrt{2 a-2 c-\sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{a^{2}-b^{2}-2 a c+c^{2}+(a-c) \sqrt{a^{2}-2 a c+b^{2}+c^{2}}} \sqrt{2}\right) \\
& -\frac{b\left(-52 a c+15 b^{2}\right) \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \tan (e x+d)}{4 a^{3}\left(-4 a c+b^{2}\right) e}-\frac{2\left(b^{2}-2 a c+b c \cot (e x+d)\right) \tan (e x+d)^{2}}{a\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}}} \\
& +\frac{\left(-12 a c+5 b^{2}\right) \sqrt{a+b \cot (e x+d)+c \cot (e x+d)^{2}} \tan (e x+d)^{2}}{2 a^{2}\left(-4 a c+b^{2}\right) e}
\end{aligned}
$$

Result (type 1, 1 leaves): ???
Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \cot (e x+d)^{3} \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 185 leaves, 8 steps):

$$
\begin{aligned}
& \left.\frac{\left(b^{2}+4 b c-4 c(a+2 c)\right) \operatorname{arctanh}\left(\frac{b+2 c \cot (e x+d)^{2}}{2 \sqrt{c} \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}}\right)}{16 c^{3 / 2} e}\right) \\
& \quad-\frac{\operatorname{arctanh}\left(\frac{2 a-b+(b-2 c) \cot (e x+d)^{2}}{2 \sqrt{a-b+c} \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}}\right) \sqrt{a-b+c}}{2 e}-\frac{\left(b-4 c+2 c \cot (e x+d)^{2}\right) \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}}{8 c e}
\end{aligned}
$$

Result(type 3, 466 leaves):
$-\frac{\sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}} \cot (e x+d)^{2}}{4 e}-\frac{\sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}} b}{8 e c}$


$$
\begin{aligned}
& +\frac{\sqrt{\left(\cot (e x+d)^{2}+1\right)^{2} c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+a-b+c}}{2 e} \\
& +\frac{\ln \left(\frac{\frac{b}{2}-c+c\left(\cot (e x+d)^{2}+1\right)}{\sqrt{c}}+\sqrt{\left(\cot (e x+d)^{2}+1\right)^{2} c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+a-b+c}\right) b}{4 e \sqrt{c}} \\
& -\frac{\ln \left(\frac{\frac{b}{2}-c+c\left(\cot (e x+d)^{2}+1\right)}{\sqrt{c}}+\sqrt{\left(\cot (e x+d)^{2}+1\right)^{2} c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+a-b+c}\right) \sqrt{c}}{2 e} \\
& -\frac{1}{2 e}\left(\sqrt { a - b + c } \operatorname { l n } \left(\frac { 1 } { \operatorname { c o t } ( e x + d ) ^ { 2 } + 1 } \left(2 a-2 b+2 c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)\right.\right.\right. \\
& \left.\left.\left.+2 \sqrt{a-b+c} \sqrt{\left(\cot (e x+d)^{2}+1\right)^{2} c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+a-b+c}\right)\right)\right)
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (e x+d)^{3}}{\left(a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}\right)^{3 / 2}} d x
$$

Optimal(type 3, 141 leaves, 6 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{2 a-b+(b-2 c) \cot (e x+d)^{2}}{2 \sqrt{a-b+c} \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}}\right)}{2(a-b+c)^{3 / 2} e}+\frac{a(b-2 c)+(2 a-b) c \cot (e x+d)^{2}}{(a-b+c)\left(-4 a c+b^{2}\right) e \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}}
$$

Result(type 3, 508 leaves):

$$
\begin{aligned}
& \frac{2 c \cot (e x+d)^{2}}{e \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}\left(4 a c-b^{2}\right)}-\frac{b}{e \sqrt{a+b \cot (e x+d)^{2}+c \cot (e x+d)^{4}}\left(4 a c-b^{2}\right)} \\
& +\frac{2 c \ln \left(\frac{2 a-2 b+2 c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+2 \sqrt{a-b+c} \sqrt{\left(\cot (e x+d)^{2}+1\right)^{2} c+(b-2 c)\left(\cot (e x+d)^{2}+1\right)+a-b+c}}{\cot (e x+d)^{2}+1}\right)}{e\left(2 c+\sqrt{-4 a c+b^{2}}-b\right)\left(-2 c+\sqrt{-4 a c+b^{2}}+b\right) \sqrt{a-b+c}} \\
& -\frac{2 c \sqrt{\left(\cot (e x+d)^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2}} c+\sqrt{-4 a c+b^{2}\left(\cot (e x+d)^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{e\left(-4 a c+b^{2}\right)\left(2 c+\sqrt{-4 a c+b^{2}}-b\right)\left(\cot (e x+d)^{2}+\frac{b}{2 c}-\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)}
\end{aligned}
$$

$$
+\frac{2 c \sqrt{\left(\cot (e x+d)^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c-\sqrt{-4 a c+b^{2}}\left(\cot (e x+d)^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{e\left(-4 a c+b^{2}\right)\left(-2 c+\sqrt{-4 a c+b^{2}}+b\right)\left(\cot (e x+d)^{2}+\frac{b}{2 c}+\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)}
$$

Summary of Integration Test Results
116 integration problems


A - 53 optimal antiderivatives

B - 52 more than twice size of optimal antiderivatives
C - 3 unnecessarily complex antiderivatives
D - 7 unable to integrate problems
E - 1 integration timeouts


[^0]:    Problem 2: Result more than twice size of optimal antiderivative.

[^1]:    Problem 6: Result more than twice size of optimal antiderivative.

[^2]:    Problem 25: Result more than twice size of optimal antiderivative.

